Акустика музыкальная. Музыкальный звук как объект изучения Профессиональные акустические системы и оборудование - широкие возможности и демократичные цены

Акустика музыкальная – наука, изучающая природу музыкальных звуков и созвучий, а также музыкальные системы и строи. Своей основой она имеет физическую акустику (законы колебания упругих тел, законы резонанса, интерференции звуков и т.д.) и психофизиологию слуха (свойства органа слуха, слуховых ощущений, восприятий и представлений). В свою очередь, музыкальная акустика служит основой для понимания ряда явлений, рассматриваемых в учении о гармонии (консонанс и диссонанс, построение и соединение созвучий, зависимость их звучания от регистра, образование ладов и т.д.), в инструментоведении (звуковые качества музыкальных инструментов, а также певческих голосов, музыкальный строй и настройка музыкальных инструментов), в оркестровке (сочетания тембров музыкальных инструментов, искажения созвучий тонами совпадения и комбинационными тонами, маскировка звуков звуками).

Основной объект изучения музыкальной акустики – музыкальный звук. В музыке употребляются главным образом звуки, обладающие определенной высотой, тембром и громкостью (собственно музыкальные звуки). Звуки, обладающие двумя свойствами – тембром и громкостью (музыкальные шумы), могут также найти место в музыкальном произведении, но лишь при определенных условиях и в ограниченных масштабах. Наш слух воспринимает звуки приблизительно в пределах от 16 до 20 000 колебаний в секунду, частотный же диапазон звуков, применяемых в музыке, находится в пределах от 16 до 4 500 герц (приблизительно). Звуки с частотой свыше 4 500 герц бедны обертонами и поэтому маловыразительны. Громкостный диапазон звуков, применяемых в музыке, также значительно уже диапазона звуков, воспринимаемых нашим слухом. Звуки, близкие к слуховому порогу (очень тихие) и звуки, близкие к болевому порогу (очень громкие), как правило, не применяются в музыке, т.к. первые требуют от нас напряженного внимания, вторые вызывают в нашем органе слуха неприятное давление и болевые ощущения.

Злоупотребление шумами и звуками, находящимися за пределами обычных норм художественного восприятия, является одной из характерных черт современной рок-музыки.

Музыкальная практика чаще всего пользуется созвучиями, в основе которых лежит терцовое соотношение звуков. Этот факт объясняется тем, что терции обладают сравнительно с другими интервалами особой характерностью: большая терция звучит мажорно, малая – минорно. Связь между звуками, образующими созвучие, обусловленная общими обертонами, может быть сильной и слабой. В зависимости от характера связей между звуками созвучие может звучать мягко (консонанс) и жестко (диссонанс). Связями между звуками объясняется также последовательность созвучий, наиболее часто встречающаяся в музыкальной практике. Организация звуков по высоте образует звуковую (музыкальную) систему. Звуковые системы возникли путем слухового отбора звуков, зависящего от различных социально обусловленных эстетических принципов.

Всякая звуковая система характеризуется: диапазоном (расстоянием между ее крайними по высоте звуками) и звуковым заполнением (количеством звуков в пределах диапазона и их интервальными соотношениями). Расположение звуков в последовательном порядке по возрастающей или убывающей высоте дает звукоряд. Для определения диапазона системы пользуются звукорядом, сведенным в гамму, т.е. сжатым до границ, не превышающих одну октаву. Например, звукоряд можно изложить в виде гаммы. Различают трехзвуковые системы (например, в диапазоне кварты), пятизвуковые (в диапазоне сексты или септимы), семизвуковые (в пределах септимы) и т.п. Звуковые системы возникают в практике музыкального искусства – народного и профессионального. Стремление определить и зафиксировать при помощи математических формул частотные (высотные) отношения между звуками музыкальных систем приводит к созданию математических строев. Эти строи служат основой для настройки музыкальных инструментов с фиксированной высотой звуков (например, 12-звуковой равномерно темперированный строй, принятый в музыке) и носят чисто теоретический (математический) характер. В пении, вообще не опирающемся на фиксированный звукоряд, а также при исполнении на инструментах с частично фиксированной высотой звуков (например, скрипка с ее четырьмя настроенными струнами) и на духовых инструментах реальное звучание лишь приблизительно соответствует математическим расчетам, характеризующим тот или иной строй. Но даже у инструментов с полностью фиксированным звукорядом (фортепиано) настройка в каждом отдельном случае производится с большим или меньшим приближением к математически точной высоте («приближённый строй») и с течением времени (в частности, в связи с употреблением инструмента) подвергается изменениям, не улавливаемым в определенной звуковой зоне нашим слухом.

Гарбузов Николай Александрович (1880 – 1955) – советский музыковед, исследователь в области музыкальной акустики и психологии, доктор искусствоведческих наук. Окончил в 1906 г. Горный институт в Петербурге и в 1916 – Музыкально-драматическое училище Московского филармонического общества по классам А.Н.Корещенко (композиция) и А.Д.Кастальского (полифония). Научная и музыкально-педагогическая деятельность Гарбузова началась в советские годы. В 1921-31 гг. он был директором Государственного института музыкальной науки (ГИМН). С 1923 – профессор музыкальной акустики и руководитель (с 1937) акустической лаборатории Московской консерватории. Гарбузов – автор научных трудов по музыкальной акустике, теории музыки, русскому народному многоголосию, музыкальной психологии. Его работы посвящены изучению акустических явлений в их применении к практике композиции и исполнительства. Разработанная Гарбузовым в 20-30 гг. теория многоосновности ладов и созвучий ставила задачей вывести из законов акустики ладово-гармоническое строение музыкальной речи, но при этом переоценивала роль акустических отношений в установлении музыкальных закономерностей. Наибольшее значение имеют исследования Гарбузова в области зонной природы слуховых восприятий. Гарбузов устанавливает, что нашим представлениям о высоте звуков соответствуют не частоты колебаний, но полосы частот, или зоны, и дает новое объяснение многим явлениям музыкальной психологии, теории музыки и музыкально-исполнительской практики.

Зона (в музыке) – область, в пределах которой данный звук или интервал может иметь различные количественные выражения, сохраняя при этом свое качество и название. Например, качество и название интервала остаются постоянными в определенных границах при различных частотных отношениях между звуками этого интервала (зона большой секунды, малой терции и т.п.); звук ля 1-й октавы воспринимается как неизменный при частотах 435, 437, 440, 443 и т.д., отклоняясь до ¼ тона (+- 1/8). На зонной природе слуха основано так называемое свободное интонирование музыки исполнителями на инструментах с частично фиксированным строем (скрипке и др.) и певцами. Зоны наблюдаются также в области темпа и ритма (временные зоны).

Литература:

  1. Музыкальная акустика. Ред. Н.А. Гарбузова. – М.-Л., 1940.
  2. Гарбузов Н.А. Зонная природа звуковысотного слуха. – М.-Л., 1948.
  3. Гарбузов Н.А. Сочинения: Теория многоосновности ладов и созвучий, ч. 1-2. – М., 1928-1932.
  4. Гарбузов Н.А. О многоголосии русской народной песни. – М.-Л., 1939.
  5. Гарбузов Н.А. Древнерусское народное многоголосие. – М.-Л., 1948.
  6. Гарбузов Н.А. Внутризонный интонационный слух и методы его развития. – М.-Л., 1951.

наука, изучающая объективные физические закономерности музыки в связи с её восприятием и исполнением. Исследует такие явления, как Высота звука, Громкость звука, Тембр и длительность музыкальных звуков, Консонанс и Диссонанс, музыкальных системы и строи (см. Строй музыкальный). Занимается изучением музыкального слуха (см. Слух музыкальный), исследованием музыкальных инструментов (См. Музыкальные инструменты) и человеческих голосов (см. Голос певческий). Выясняет, как физические и психофизиологические закономерности музыки отражаются в специфических законах этого искусства и воздействуют на их эволюцию. В М. а. используются данные и методы общей физической акустики, изучающей процессы возникновения и распространения звука. Она тесно связана с архитектурной акустикой, с психологией восприятия, физиологией слуха и голоса. М. а. привлекается для объяснения ряда явлений в области гармонии (См. Гармония), музыкальных инструментов, инструментовки (См. Инструментовка) и т. д.

Как раздел музыкальной теории М. а. зародилась ещё в учениях древних философов и музыкантов. Значительный этап в развитии М. а. связан с именем выдающегося немецкого учёного-физика и физиолога 19 в.Г. Гельмгольца, выдвинувшего первую законченную концепцию физиологии звуковысотного слуха - так называемую резонансную теорию слуха. Большой вклад в развитие М. а. внесли в конце 19 - начале 20 вв. К. Штумпф и В. Кёлер (Германия), которые ввели в неё учение о механизмах отражения (ощущения и восприятия) различных объективных сторон звуковых колебаний. В 20 в. сфера М. а. ещё более расширяется. Развивается метод анализа музыкальных звуков, основанный на выделении из сложного звукового спектра частичных тонов и измерении их относительной интенсивности, приобретший большое значение в акустике певческого голоса и музыкальных инструментов. Разрабатываются вопросы акустики радиостудий, студий звукозаписи, стереофонической записи и воспроизведения звука. Важный этап в развитии современной М. а. связан с исследованиями советского музыковеда и учёного-акустика Н. А. Гарбузова, выдвинувшего теорию слухового восприятия, исходящую из зонной концепции музыкального слуха (см. Зона). Всеобщее признание получила и работа советских специалистов Л. С. Термена и А. А. Володина в области электромузыкальных инструментов, а также разработанная последним теория звуковысотного восприятия, согласно которой воспринимаемая человеком высота звука определяется не одной лишь частотой колебаний его основного тона, но всем его гармоническим спектром.

Лит.: Гельмгольц Г., Учение о слуховых ощущениях как физиологическая основа для теории музыки, пер. с нем., СПБ, 1875; Риман Г., Акустика с точки зрения музыкальной науки, пер. с нем., М., 1898; Римский-Корсаков А. В., Развитие музыкальной акустики в СССР, «Изв. АН СССР», Серия физическая, 1949, т. 13, № 6; Музыкальная акустика, под ред. Н. А. Гарбузова, М., 1954; Володин А., Роль гармонического спектра в восприятии высоты и тембра звука, в сб.: Музыкальное искусство и наука, в. 1, М., 1970; Stumpf С., Tonpsychologie, Bd 1-2, Lpz., 1883-90; Köhler W., Akustische Untersuchungen, «Zeitschrift für Psychologie», 1910-13, Bd 54, 58,64; Wood A., Acoustics, N. Y., ; Backus J., The acoustical foundations of music, N. Y., . См. также лит. при ст. Гарбузов Н. А.

Ощущение, которое складывается от любого медиа-пространства - от масштабного кинотеатра до домашней «сцены» - во многом зависит от того, насколько качественно в нем выстроен звук. Это оборудование, без которого нельзя создать по-настоящему уютное кафе или клуб, где выступают музыканты. Без звукового сопровождения не обходятся стадионы, конференц-холлы, торгово-развлекательные комплексы и всевозможные шоу-центры.

Высококачественная акустическая система дает возможность поразить, привлечь и удержать аудиторию, быстро создать правильное впечатление. Информация, передаваемая по аудиоканалам, воздействует на эмоциональную сферу и психику человека напрямую, и ошибки, недостатки звука обходятся дорого. Это не значит, что на оборудование придется потратить чрезмерно много и цена окажется «неподъемной» - в нашем интернет-магазине вы всегда сможете купить акустическую систему недорого. Консультанты помогут правильно подобрать все составляющие, рассчитать мощность, количество элементов в системе, чтобы обеспечить нужный заказчику эффект с наибольшим «КПД» от вложений.

Профессиональные акустические системы и оборудование - широкие возможности и демократичные цены

«Свет и Музыка» - магазин, который поможет покупателям увеличить средний размер чека в коммерческом заведении и создать особую атмосферу дома. Приобретая у нас профессиональные акустические системы, заказчики смогут оснастить медиа-комплекс всем необходимым оборудованием, от сложных заэкранных устройств для кинотеатров до динамиков и комплектующих. Мы работаем на рынке около 20 лет и за это время создали надежную, разветвленную сеть агентских связей и наладили собственное производство. Это дает нам возможность оптимизировать стоимость оборудования - в магазине вы найдете доступную, но стопроцентно качественную продукцию, уровень которой вас приятно поразит. Сотрудничая с нами, заказчики получают:

  • профессиональный подход - мы индивидуально консультируем покупателей, помогая им сориентироваться в нашем ассортименте и выбрать наиболее подходящие им системы;
  • удобное и надежное партнерство с официальным представителем магазина - у нас есть отделения в тринадцати городах и развитая дилерская сеть;
  • широкий выбор - у нас нужные товары найдут музыканты и организаторы зрелищных мероприятий. владельцы концертных, спортивных залов и медиа-комплексов, образовательных учреждений и так далее.

Мы поможем вам организовать звук на сцене рок-клуба или в караоке-зале, предложим оптимально подходящий комплект для репетиционной «точки». С нашими акустическими системами, музыкальными инструментами и техникой вы сможете реализовать потенциал пространства, воплотить творческий замысел, удивить и впечатлить посетителей и получить нужный вам результат - в том числе, и финансовый.

Акустические системы

Сегодня невозможно найти человека, затрудняющегося ответить на вопрос ‒ какова функция ящиков и ящичков на авансценах концертных залов, ресторанов, молодежных клубов, кинотеатров или в комнатах меломанов? Это акустические системы , превращающие электрический сигнал в звук необходимой громкости.

В нашем интернет-магазине имеется огромный выбор специализированных акустических систем. Одни из них предназначены для домашнего прослушивания музыки, другие - для индивидуального и ансамблевого музицирования, третьи - для зрелищно-концертных мероприятий. Часть этой аппаратуры снабжена дополнительными устройствами (например, микшеры , эквалайзеры , микрофоны ) и аксессуарами (стойки , подставки , крепеж ). Здесь каждый найдет то, что ему нужно.

Любая акустическая система - это плод сложных расчетов и творческого озарения инженеров-звукотехников. Не станем вдаваться в детали конструкций и электрических схем. Но что же нужно знать, чтобы выбор в океане ассортимента был осмысленным?

Вначале обратим внимание на корпус (или, как говорят специалисты, - на акустическое оформление ). Это не банальная подставка для закрепления излучателей, а полноценная резонирующая дека. Поэтому имеет значение материал, из которого корпус изготовлен:

фанера (как у EUROSOUND FOCUS-1100A-USB ) или спрессованные древесные волокна (как у JBL JRX225 ) насыщают звук благородством обертонов нижнего и среднего спектра;

металл (как у изделий типа мегафон PROAUDIO PMD-25 ) или пластик (у AudioVoice AP212D ) высвечивают высокочастотный спектр.

Во-вторых, все многообразие акустических систем может быть сведено к двум основным типам:

а) пассивные акустические системы трансформируют в звук электрический сигнал, полученный от внешнего усилителя. Они могут составить кабинет из нескольких акустических систем, когда в условиях больших залов или открытых пространств нужно достичь мощного усиления звука (например, MARTIN AUDIO F15+ , EUROSOUND PORT-8 или JBL JRX225 ). Используя их, Вы избегаете забот с подключением к электропитанию, с заземлением каждой отдельной системы и, соответственно, ‒ с мешающими всем жгутами проводов. Но полезно знать, что согласование усилителя и акустической системы - непростая инженерная задача. Поэтому купить усилитель и акустические системы различных фирм ‒ значит вступить в зону риска: результат может Вас разочаровать;

б) активные акустические системы снабжены встроенной в общий корпус и согласованной с излучателями электроникой. В случаях, когда акустические системы устанавливаются компактно и не возникает особых проблем с их подключением к электросети и заземлением, эти устройства имеют явные преимущества (EUROSOUND ESM-8Bi , TOPP PRO X 10A , BEHRINGER B215D и др.).

В-третьих, даже далекому от акустики человеку понятно, что спектр звуковых частот не может быть качественно воспроизведен одним источником звука. Акустические системы обычно снабжены несколькими излучателями, каждый из которых отвечает за свою полосу (диапазон) звуковых частот. В продаже имеются двухполосные (например, American DJ ELS GO 8BT ) и трехполосные акустические системы (Biema FP153AII ).

Однако низкочастотный спектр часто поручается отдельным устройствам, называемым субвуферы , которые также могут быть пассивного (JBL STX828S ) и активного (Behringer VQ1800D ) типов.

Как Вы, конечно, поняли, с выбором акустических систем важно «не промахнуться». Обратитесь к нашим консультантам, они помогут Вам подобрать такие устройства, которые будут соответствовать Вашим требованиям, особенностям помещения и условиям эксплуатации.

(от греч. akustikos - слуховой, слушающийся), в узком смысле слова - учение о звуке, т. е. об упругих колебаниях и волнах в газах, жидкостях и твёрдых телах, слышимых человеческим ухом (частоты таких колебаний находятся в диапазоне 16 гц-20 кгц); в широком смысле - область физики, исследующая упругие колебания и волны от самых низких частот (условно от 0 гц) до предельно высоких частот 1012-1013 гц, их взаимодействия с веществом и применения этих колебаний (волн).

Акустический институт Академии наук СССР (АКИН)

научно-исследовательское учреждение, в котором ведутся работы в области акустики. Создан в Москве в 1953 на базе Акустической лаборатории Физического института им. П. Н. Лебедева АН СССР. Основные направления работ института (1968): исследования по распространению и дифракции звука, физиологической акустике, нелинейной акустике, ультразвуку, физической акустике жидкости и газов, акустике твёрдого тела и квантовой акустике, акустике океана; изыскание новых материалов, применяемых в акустических преобразователях; изыскание новых вибропоглощающих материалов и методов борьбы с шумами и вибрациями. Архитектурная акустика - акустика помещений, область акустики, изучающая распространение звуковых волн в помещении, отражение и поглощение их поверхностями, влияние отражённых волн на слышимость речи и музыки. Целью исследований служит создание приёмов проектирования залов (театральных, концертных, лекционных, радиостудий и т. п.) с заранее предусмотренными хорошими условиями слышимости.

Бел

единица логарифмической относительной величины (логарифма отношения двух одноимённых физических величин), применяется в электротехнике, радиотехнике, акустике и других областях физики; обозначается б или В, названа по имени американского изобретателя телефона А. Г. Белла. Число N белов, соответствующее отношению двух энергетических величин P1 и P2 (к которым относятся мощность, энергия, плотность энергии и т.д.), выражается формулой N = lg(P1/P2), а для "силовых" величин F1 и F2 (напряжения, силы тока, давления, напряжённости поля и др.) N = 2·lg(F1/F2). Обычно применяют 0,1 долю Бел, называемою децибелом (дб, dB).

Белый шум

шум, в котором звуковые колебания разной частоты представлены в равной степени, т. е. в среднем интенсивности звуковых волн разных частот примерно одинаковы, например шум водопада. Название "Белый шум" - по аналогии с белым светом. См. также Шум.

Воспринимаемый уровень звука (PN дБ)

уровень звукового давления случайного шума в полосе от одной трети октавы до одной октавы в окрестности частоты 1000 Гц, соответствующий, по оценке «нормальных» слушателей, громкости рассматриваемого шума.

Время реверберации

промежуток времени после выключения источника звука, в течение которого реверберационный звук данной частоты ослабевает на 60 дБ. Обычно измеряют время для первых 30 дБ ослабления и экстраполируют результат.

Высота звука

характеристика слухового восприятия, позволяющая распределить звуки по шкале от низких до высоких звуков. Зависит преимущественно от частоты, но также от величины звукового давления и формы волны.

Громкость звука

величина, характеризующая слуховое ощущение для данного звука. Громкость звука сложным образом зависит от звукового давления (или интенсивности звука), частоты и формы колебаний. При неизменной частоте и форме колебаний громкость звука растет с увеличением звукового давления. При одинаковом звуковом давлении Громкость звука чистых тонов (гармонических колебаний) различной частоты различна, т. е. на разных частотах одинаковую громкость могут иметь звуки разной интенсивности. Громкость звука данной частоты оценивают, сравнивая её с громкостью простого тона частотой 1000 гц. Уровень звукового давления (в дб) чистого тона с частотой 1000 гц, столь же громкого (сравнением на слух), как и измеряемый звук, называется уровнем громкости данного звука (в фонах). Громкость звука для сложных звуков оценивают по условной шкале в сонах. Громкость звука является важной характеристикой музыкального звука.

Децибел

(от деци... и бел) - дольная единица от бела - единицы логарифмической относительной величины (десятичного логарифма отношения двух одноимённых физических величин - энергий, мощностей, звуковых давлений и др.); равна 0,1 бел. Обозначения: русское дб, международное dB. Децибел чаще применяется на практике, чем основная единица - бел.

Звуковое давление

давление, дополнительно возникающее при прохождении звуковой волны в жидкой и газообразной среде. Распространяясь в среде, звуковая волна образует сгущения и разрежения, которые создают добавочные изменения давления по отношению к среднему значению давления в среде. Т. о., звуковое давление представляет собой переменную часть давления, т. е. колебания давления относительно среднего значения, частота которых соответствует частоте звуковой волны. Звуковое давление - основная количественная характеристика звука. Единица измерения Звукового давления в системе единиц СИ - ньютон на м2 (ранее употреблялась единица бар: 1 бар = 10-1 н/м2). Иногда для характеристики звука применяется уровень звукового давления - выраженное в дб отношение величины данного звукового давления к пороговому значению З. д. ро = 2-10-5 н/м2. При этом число децибел N = 20 lg (p/po). Звуковое давление в воздухе изменяется в широких пределах - от 10-5 н/м2 вблизи порога слышимости до 103 н/м2 при самых громких звуках, например шумах реактивных самолётов. В воде на ультразвуковых частотах порядка нескольких Мгц с помощью фокусирующих излучателей получают значение З. д. до 107 н/м2. При значительном звуковом давлении наблюдается явление разрыва сплошности жидкости - кавитация. Звуковое давление следует отличать от давления звука.

Звукоизоляция ограждающих конструкций зданий

ослабление звука при его проникновении через ограждения зданий в более широком смысле - совокупность мероприятий по снижению уровня шума, проникающего в помещения извне. Количественная мера звукоизоляции ограждающих конструкций, выражаемая в децибелах (дб), называется звукоизолирующей способностью. Различают звукоизоляцию от воздушного и ударного звуков. Звукоизоляция от воздушного звука характеризуется снижением уровня этого звука (речи, пения, радиопередачи) при прохождении его через ограждение и оценивается частотной характеристикой звукоизоляции в диапазоне частот 100-3200 гц с учётом влияния звукопоглощения изолируемого помещения. Звукоизоляция от ударного звука (шагов людей, передвигания мебели и т.п.) зависит от уровня звука, возникающего под перекрытием, и оценивается частотной характеристикой приведённого уровня звукового давления в том же диапазоне частот при работе на перекрытии стандартной ударной машины, также с учётом звукопоглощения изолируемого помещения.

Звукопоглощающие конструкции

устройства для поглощения падающих на них звуковых волн. Звукопоглощающие конструкции включают звукопоглощающие материалы, средства их укрепления, иногда - декоративные покрытия. Наиболее распространённые типы звукопоглощающих конструкций - звукопоглощающие облицовки внутренних поверхностей (потолков, стен, вентиляционных каналов, шахт лифтов и т. п.), штучные звукопоглотители, элементы активных глушителей шума.

Импеданс акустический

комплексное сопротивление, которое вводится при рассмотрении колебаний акустических систем (излучателей, рупоров, труб и т. п.). Импеданс акустический представляет собой отношение комплексных амплитуд звукового давления и объёмной колебательной скорости частиц среды (последняя равна произведению усреднённой по площади колебательной скорости на площадь, для которой определяется И. а.). Комплексное выражение «Импеданс акустический» имеет вид Za = Ra + i Xa, где i - мнимая единица. Разделяя комплексный Импеданс акустический на вещественную и мнимую части, получают активную Ra и реактивную Xa составляющие Импеданс акустический - активное и реактивное акустические сопротивления. Первое связано с трением и потерями энергии на излучение звука акустической системой, а второе - с реакцией сил инерции (масс) или сил упругости (гибкости). Реактивное сопротивление в соответствии с этим бывает инерционное или упругое.

Коэффициент поглощения (α)

если поверхность находится в звуковом поле, то «α» есть отношение звуковой энергии, поглощенной поверхностью, к энергии, падающей на нее. Если поглощается 60 % падающей энергии, то коэффициент поглощения равен 0,6.

Музыкальная акустика

наука, изучающая объективные физические закономерности музыки в связи с её восприятием и исполнением. Исследует такие явления, как высота звука, громкость звука, тембр и длительность музыкальных звуков, консонанс и диссонанс, музыкальных системы и строи. Занимается изучением музыкального слуха, исследованием музыкальных инструментов и человеческих голосов. Выясняет, как физические и психофизиологические закономерности музыки отражаются в специфических законах этого искусства и воздействуют на их эволюцию. В музыкальной акустике используются данные и методы общей физической акустики, изучающей процессы возникновения и распространения звука. Она тесно связана с архитектурной акустикой, с психологией восприятия, физиологией слуха и голоса. Музыкальная акустика привлекается для объяснения ряда явлений в области гармонии, музыкальных инструментов, инструментовки и т.д. Ограждающие конструкции зданий и сооружений, строительные конструкции (стены, перекрытия, покрытия, заполнения проёмов, перегородки и т.д.), ограничивающие объём здания (сооружения) и разделяющие его на отдельные помещения. Основное назначение ограждающих конструкций защита (ограждение) помещений от температурных воздействий, ветра, влаги, шума, радиации и т.п., в чём состоит их отличие от несущих конструкций, воспринимающих силовые нагрузки; это отличие условно, т.к. часто ограждающие и несущие функции совмещаются в одной конструкции (стены, перегородки, плиты перекрытий и покрытий и др.). Ограждающие конструкции разделяют на внешние (или наружные) и внутренние. Внешние служат главным образом для защиты от атмосферных воздействий, внутренние) в основном для разделения внутреннего пространства здания и шумоизоляции.

Поглощение звука

превращение энергии звуковой волны в другие виды энергии, и в частности в тепло; характеризуется коэффициентом поглощения а, который определяется как величина, обратная расстоянию, на котором амплитуда звуковой волны уменьшается в е = 2,718 раз. а выражается в см-1 т.е. в неперах на см или же в децибелах на м (1 дб/м = 1,15·10-3 см-1).

Порог слышимости

минимальная величина звукового давления, при которой звук данной частоты может быть ещё воспринят ухом человека. Величину «порог слышимости» принято выражать в децибелах, принимая за нулевой уровень звукового давления 2·10-5 н/м2 или 2·10-4 н/м2 при частоте 1 кгц (для плоской звуковой волны). Порог слышимости зависит от частоты звука. При действии шумов и др. звуковых раздражений П. с. для данного звука повышается, причём повышенное значение порога слышимости сохраняется некоторое время после прекращения действия мешающего фактора, а затем постепенно возвращается к исходному уровню. У разных людей и у одних и тех же лиц в разное время порога слышимости может различаться в зависимости от возраста, физиологического состояния, тренированности. Измерения порога слышимости обычно производятся методами аудиометрии.

Реверберация

(позднелат. reverberatio - отражение, от лат. reverbero - отбрасываю), процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Воздушный объём помещения представляет собой колебательную систему с очень большим числом собственных частот. Каждое из собственных колебаний характеризуется своим коэффициентом затухания, зависящим от поглощения звука при его отражении от ограничивающих поверхностей и при его распространении. Поэтому возбуждённые источником собственные колебания различных частот затухают неодновременно. Реверберация оказывает значительное влияние на слышимость речи и музыки в помещении, т.к. слушатели воспринимают прямой звук на фоне ранее возбуждённых колебаний воздушного объёма, спектры которых изменяются во времени в результате постепенного затухания составляющих собственных колебаний. Влияние реверберации тем более значительно, чем медленнее они затухают. В помещениях, размеры которых велики по сравнению с длинами волн, спектр собственных колебаний можно считать непрерывным и представлять реверберацию как результат сложения прямого звука и ряда запаздывающих и убывающих по амплитуде его повторений, обусловленных отражением от ограничивающих поверхностей.

Строительная акустика

научная дисциплина, изучающая вопросы защиты помещений, зданий и территорий населённых мест от шума архитектурно-планировочными и строительно-акустическими (конструктивными) методами. Строительную акустику рассматривают и как отрасль прикладной акустики, и как раздел строительной физики. К архитектурно-планировочным методам строительной акустики относятся: рациональные (с точки зрения защиты от шума) объёмно-планировочные решения зданий и помещений; удаление источников шума от защищаемых объектов; оптимальная планировка микрорайонов, жилых районов, а также территорий промышленных предприятий.

Фон

(от греч. phone - звук) - единица уровня громкости звука. В связи с тем, что на разных частотах одинаковую громкость могут иметь звуки разной интенсивности (различающиеся звуковым давлением), громкость звука оценивают, сравнивая её с громкостью стандартного чистого тона (обычно частотой 1000 гц). 1 Фон - разность уровней громкости двух звуков данной частоты, для которых равные по громкости звуки с частотой 1000 гц отличаются по интенсивности (уровню звукового давления) на 1 децибел. Для чистого тона частотой 1000 гц шкала Фона совпадает со шкалой децибел.

Шум

беспорядочные колебания различной физической природы, отличающиеся сложностью временной и спектральной структуры. В быту под шумом понимают разного рода нежелательные акустические помехи при восприятии речи, музыки, а также любые звуки, мешающие отдыху, работе. Шум играет существенную роль во многих областях науки и техники: акустике, радиотехнике, радиолокации, радиоастрономии, теории информации, вычислительной технике, оптике, медицине и др. Шум, независимо от физической природы, отличается от периодических колебаний случайным изменением мгновенных значений величин, характеризующих данный процесс. Часто шум представляет собой смесь случайных и периодических колебаний. Для описания шума применяют различные математические модели в соответствии с их временной, спектральной и пространственной структурой. Для количественной оценки шума пользуются усреднёнными параметрами, определяемыми на основании статистических законов, учитывающих структуру шума в источнике и свойства среды, в которой шум распространяется.

Шумозащита

комплекс мероприятий (технических, архитектурно-планировочных, строительно-акустических и др.), осуществляемых для защиты от шума и ограничения его уровня в помещениях, зданиях и на территории населённых мест в соответствии с требованиями санитарных норм. Эффективная шумозащита в значительной мере способствует повышению степени благоустройства населённых мест, оздоровлению условий быта, труда и отдыха населения. См. также Звукоизоляция ограждающих конструкций зданий, Звукопоглощающие конструкции, Строительная акустика.

Шумомер

прибор для объективного измерения уровня громкости звука (шума). Шумомер содержит ненаправленный измерительный микрофон, усилитель, корректирующие фильтры, детектор и стрелочный прибор - индикатор. Общая схема шумомера выбрана так, чтобы его свойства приближались к свойствам человеческого уха. Чувствительность уха зависит от частоты звука, а вид этой зависимости изменяется с изменением интенсивности измеряемого шума (звука). Поэтому в шумомере имеются 3 комплекта фильтров, обеспечивающих нужную форму частотной характеристики при малой громкости ~40 фон (используется в диапазоне 20-55 фон), В - средней громкости ~70 фон (55-85 фон) и С - большой громкости (85-140 фон). Характеристика при большой громкости равномерна в полосе частот 30-8000 гц. Шкала А применяется также для измерения уровня громкости, выраженного в единицах - децибел с пометкой А, т. е. дб (А), при любой громкости. Величиной уровня звука в дб (А) пользуются при нормировании громкости шума в промышленности, жилых домах и на транспорте. Переключение фильтров производится вручную в зависимости от громкости измеряемого звука (шума). Выпрямленный квадратичным детектором сигнал усредняется за время, соответствующее постоянной времени уха 50-60 мсек (промежуток времени, в течение которого ухо вследствие своей инерционности воспринимает два отд. звуковых сигнала как один слитный). Шкала выходного прибора градуируется в децибелах относительно среднеквадратичного уровня звукового давления (2·10-5 н/м2) по одной из 3 шкал - А, В или С. Современный шумомер представляет собой компактный портативный прибор, питание которого осуществляется при помощи находящихся внутри сухих батарей. Микрофон, электронная схема и индикатор шумомера должны быть предельно устойчивы по отношению к изменениям температуры, влажности, барометрического давления, а также стабильны во времени.

ЭХО

отраженный звук, достигающий слушателя с таким большим запозданием, что вызывает ощущение, отдельное от ощущения прямого звука.