Системы линейных алгебраических уравнений метод гаусса. Метод Гаусса (последовательного исключения неизвестных)

Сегодня разбираемся с методом Гаусса для решения систем линейных алгебраических уравнений. О том, что это за системы, можно почитать в предыдущей статье, посвященной решению тех же СЛАУ методом Крамера. Метод Гаусса не требует каких-то специфических знаний, нужна лишь внимательность и последовательность. Несмотря на то что с точки зрения математики для его применения хватит и школьной подготовки, у студентов освоение этого метода часто вызывает сложности. В этой статье попробуем свести их на нет!

Метод Гаусса

Метод Гаусса – наиболее универсальный метод решения СЛАУ (за исключением ну уж очень больших систем). В отличие от рассмотренного ранее метода Крамера , он подходит не только для систем, имеющих единственное решение, но и для систем, у которых решений бесконечное множество. Здесь возможны три варианта.

  1. Система имеет единственное решение (определитель главной матрицы системы не равен нулю);
  2. Система имеет бесконечное множество решений;
  3. Решений нет, система несовместна.

Итак, у нас есть система (пусть у нее будет одно решение), и мы собираемся решать ее методом Гаусса. Как это работает?

Метод Гаусса состоит из двух этапов – прямого и обратного.

Прямой ход метода Гаусса

Сначала запишем расширенную матрицу системы. Для этого в главную матрицу добавляем столбец свободных членов.

Вся суть метода Гаусса заключается в том, чтобы путем элементарных преобразований привести данную матрицу к ступенчатому (или как еще говорят треугольному) виду. В таком виде под (или над) главной диагональю матрицы должны быть одни нули.

Что можно делать:

  1. Можно переставлять строки матрицы местами;
  2. Если в матрице есть одинаковые (или пропорциональные) строки, можно удалить их все, кроме одной;
  3. Можно умножать или делить строку на любое число (кроме нуля);
  4. Нулевые строки удаляются;
  5. Можно прибавлять к строке строку, умноженную на число, отличное от нуля.

Обратный ход метода Гаусса

После того как мы преобразуем систему таким образом, одна неизвестная Xn становится известна, и можно в обратном порядке найти все оставшиеся неизвестные, подставляя уже известные иксы в уравнения системы, вплоть до первого.

Когда интернет всегда под рукой, можно решить систему уравнений методом Гаусса онлайн . Достаточно лишь вбить в онлайн-калькулятор коэффициенты. Но согласитесь, гораздо приятнее осознавать, что пример решен не компьютерной программой, а Вашим собственным мозгом.

Пример решения системы уравнений методом Гаусс

А теперь - пример, чтобы все стало наглядно и понятно. Пусть дана система линейных уравнений, и нужно решить ее методом Гаусса:

Сначала запишем расширенную матрицу:

Теперь займемся преобразованиями. Помним, что нам нужно добиться треугольного вида матрицы. Умножим 1-ую строку на (3). Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой и получим:

Затем умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой:

Умножим 1-ую строку на (6). Умножим 2-ую строку на (13). Добавим 2-ую строку к 1-ой:

Вуаля - система приведена к соответствующему виду. Осталось найти неизвестные:

Система в данном примере имеет единственное решение. Решение систем с бесконечным множеством решений мы рассмотрим в отдельной статье. Возможно, сначала Вы не будете знать, с чего начать преобразования матрицы, но после соответствующей практики набьете руку и будете щелкать СЛАУ методом Гаусса как орешки. А если Вы вдруг столкнетесь со СЛАУ, которая окажется слишком крепким орешком, обращайтесь к нашим авторам! Заказать недорого реферат вы можете, оставив заявку в Заочнике. Вместе мы решим любую задачу!

Пояснительная записка

Данная методическая разработка предназначена для проведения занятия по дисциплине “Математика” на тему “Решение систем линейных уравнений методом Гаусса” по программе учебной дисциплины, разработанной на основе Федерального государственного образовательного стандарта для специальностей среднего профессионального образования.

В результате изучения темы студент должен:

знать:

  • элементарные преобразования над матрицами;
  • этапы решения систем линейных уравнений методом Гаусса.

уметь:

  • решать системы линейных уравнений методом Гаусса.

Цели занятия:

обучающие:

  • рассмотреть элементарные преобразования над матрицами;
  • рассмотреть метод Гаусса для решения систем линейных уравнений.

развивающие:

  • развивать умения анализировать полученную информацию, делать выводы;

воспитательные:

  • воспитывать у студентов интерес к изучаемой дисциплине, показывать значимость знаний по данной теме для их дальнейшей профессиональной деятельности;
  • воспитывать готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни.

Ход занятия

Деятельность преподавателя Деятельность студентов Общее время
1. Организационная часть
Отмечает студентов в журнале 1 мин
2. Проверка самостоятельной работы Сдают выполненную внеаудиторную самостоятельную работу 5 мин
3. Изложение теоретического материала
Сообщает тему и цели занятия Анализируют цель занятия

Фиксируют тему в тетрадь

1 мин
Объясняет ход занятия Фиксируют план лекции в тетрадь 3 мин
Знакомит с методом Гаусса Фиксируют этапы решения системы линейных уравнений методом Гаусса 15 мин
Знакомит с элементарными преобразованиями матрицы Фиксируют элементарные преобразования матрицы 15 мин
Рассматривает метод Гаусса на конкретном примере Фиксируют ход решения в тетрадь 12 мин
4. Практическая часть
Выполняют задания 25 мин
Осуществляет консультирование студентов по итогу проведения занятия Задают вопросы 5 мин
5. Итоги занятия
Проверяет результаты работы Оценивают результаты своей работы 5 мин
Фиксирует результаты проверки в журнал
Выдает внеаудиторную самостоятельную работу с объяснениями Фиксируют задание, озвучивают вопросы по выполнению 3 мин

Оценка “отлично” :

  • работа выполнена полностью;

Оценка “хорошо” :

Оценка “удовлетворительно” :

Оценка “неудовлетворительно” :

Общее время - 90 мин.

План занятия:

  1. Организационный момент;
  2. Проверка внеаудиторной самостоятельной работы;
  3. Теоретическая часть;
  4. Практическая часть;
  5. Итоги занятия.

Теоретическая часть

Одним из наиболее универсальных и эффективных методов решений систем линейных уравнений является метод Гаусса, состоящий в последовательном исключении неизвестных.

Система n линейных уравнений с m неизвестными может имеет вид:

I=1, 2, 3, …, n; j=1, 2, 3,..., m.

Заметим, что число неизвестных m и число уравнений n в общем случае между собой никак не связаны. Возможны три случая: m=n, m > n, m < n.

Решением системы называется любая конечная последовательность из m чисел (, которая является решением каждого из уравнений системы.

Процесс решения по методу Гаусса состоит из двух этапов:

1. Система приводится к ступенчатому (треугольному) виду

2. Последовательное определение неизвестных из получившейся ступенчатой системы.

Пусть дана система трех линейных уравнений с тремя неизвестными x, y, z

Введем в рассмотрение матрицу систему и расширенную матрицу .

Элементарные преобразования матриц:

1. Перестановка местами двух рядов матрицы:

;

2. Умножение (деление) всех элементов ряда матрицы на число, отличное от нуля:

Разделим элементы первой строки на 2, а второй – умножим на 2

.

3. Прибавление ко всем элементам одного ряда матрицы соответствующих элементов другого ряда, умноженных на одно и тоже число:

Умножим элементы первой строки на 2:

.

Прибавим ко всем элементам первой строки соответствующие элементы второй строки, при этом элементы первой строки запишем без изменений:

Разделим элементы первой строки на 2:

На практике некоторые действия выполняют устно:

Если в процессе преобразований появится нулевой ряд в матрице, его можно удалить.

Рассмотрим суть метода Гаусса на конкретной системе линейных уравнений (см Приложение ):

Решите систему линейных уравнений методом Гаусса

Запишем расширенную матрицу:

Исходная система свелась к ступенчатой:

Из последнего уравнения из предпоследнего уравнения или .

Найдем из первого уравнения : или .

г)

Критерии оценки выполнения самостоятельной работы:

Оценка “отлично” :

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Оценка “хорошо” :

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два–три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Оценка “удовлетворительно” :

  • допущено более одной ошибки или более двух–трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Оценка “неудовлетворительно” :

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

В нашем калькуляторе вы бесплатно найдете решение системы линейных уравнений методом Гаусса онлайн с подробным решением и даже с комплексными числами . У нас вы можете решить как обычную определенную, так и неопределенную систему уравнений, которая имеет бесконечное множество решений. В этом случае в ответе вы получите зависимость одних переменных через другие - свободные. Также можно проверить систему на совместность, используя все тот же метод Гаусса.

Подробнее о том, как пользоваться нашим онлайн калькулятором, вы можете прочитать в инструкции .

О методе

При решении системы линейных уравнений методом Гаусса выполняются следующие шаги.

  1. Записываем расширенную матрицу.
  2. Фактически алгоритм разделяют на прямой и обратный ход. Прямым ходом называется приведение матрицы к ступенчатому виду. Обратным ходом называется приведение матрицы к специальному ступенчатому виду. Но на практике удобнее сразу занулять то, что находится и сверху и снизу рассматриваемого элемента. Наш калькулятор использует именно этот подход.
  3. Важно отметить, что при решении методом Гаусса, наличие в матрице хотя бы одной нулевой строки с НЕнулевой правой частью (столбец свободных членов) говорит о несовместности системы. Решение в таком случае не существует.

Чтобы лучше всего понять принцип работы алгоритма, введите любой пример, выберите "очень подробное решение" и изучите полученный ответ.

Пусть дана система , ∆≠0. (1)
Метод Гаусса – это метод последовательного исключения неизвестных.

Суть метода Гаусса состоит в преобразовании (1) к системе с треугольной матрицей , из которой затем последовательно (обратным ходом) получаются значения всех неизвестных. Рассмотрим одну из вычислительных схем. Эта схема называется схемой единственного деления. Итак, рассмотрим эту схему. Пусть a 11 ≠0 (ведущий элемент) разделим на a 11 первое уравнение. Получим
x 1 +a (1) 12 ·x 2 +...+a (1) 1n ·x n =b (1) 1 (2)
Пользуясь уравнением (2), легко исключить неизвестные x 1 из остальных уравнений системы (для этого достаточно из каждого уравнения вычесть уравнение (2) предварительно умноженное на соответствующий коэффициент при x 1), то есть на первом шаге получим
.
Иными словами, на 1 шаге каждый элемент последующих строк, начиная со второй, равен разности между исходным элементом и произведением его «проекции» на первый столбец и первую (преобразованную) строку.
Вслед за этим оставив первое уравнение в покое, над остальными уравнениями системы, полученной на первом шаге, совершим аналогичное преобразование: выберем из их числа уравнение с ведущим элементом и исключим с его помощью из остальных уравнений x 2 (шаг 2).
После n шагов вместо (1) получим равносильную систему
(3)
Таким образом, на первом этапе мы получим треугольную систему (3). Этот этап называется прямым ходом.
На втором этапе (обратный ход) мы находим последовательно из (3) значения x n , x n -1 , …, x 1 .
Обозначим полученное решение за x 0 . Тогда разность ε=b-A·x 0 называется невязкой .
Если ε=0, то найденное решение x 0 является верным.

Вычисления по методу Гаусса выполняются в два этапа:

  1. Первый этап называется прямым ходом метода. На первом этапе исходную систему преобразуют к треугольному виду.
  2. Второй этап называется обратным ходом. На втором этапе решают треугольную систему, эквивалентную исходной.
Коэффициенты а 11 , а 22 , …, называют ведущими элементами.
На каждом шаге предполагалось, что ведущий элемент отличен от нуля. Если это не так, то в качестве ведущего можно использовать любой другой элемент, как бы переставив уравнения системы.

Назначение метода Гаусса

Метод Гаусса предназначен для решения систем линейных уравнений. Относится к прямым методам решения.

Виды метода Гаусса

  1. Классический метод Гаусса;
  2. Модификации метода Гаусса. Одной из модификаций метода Гаусса является схема с выбором главного элемента. Особенностью метода Гаусса с выбором главного элемента является такая перестановка уравнений, чтобы на k -ом шаге ведущим элементом оказывался наибольший по модулю элемент k -го столбца.
  3. Метод Жордано-Гаусса;
Отличие метода Жордано-Гаусса от классического метода Гаусса состоит в применении правила прямоугольника , когда направление поиска решения происходит по главной диагонали (преобразование к единичной матрице). В методе Гаусса направление поиска решения происходит по столбцам (преобразование к системе с треугольной матрицей).
Проиллюстрируем отличие метода Жордано-Гаусса от метода Гаусса на примерах.

Пример решения методом Гаусса
Решим систему:



Умножим 2-ую строку на (2). Добавим 3-ую строку к 2-ой



Из 1-ой строки выражаем x 3:
Из 2-ой строки выражаем x 2:
Из 3-ой строки выражаем x 1:

Пример решения методом Жордано-Гаусса
Эту же СЛАУ решим методом Жордано-Гаусса.

Последовательно будем выбирать разрешающий элемент РЭ, который лежит на главной диагонали матрицы.
Разрешающий элемент равен (1).



НЭ = СЭ - (А*В)/РЭ
РЭ - разрешающий элемент (1), А и В - элементы матрицы, образующие прямоугольник с элементами СТЭ и РЭ.
Представим расчет каждого элемента в виде таблицы:

x 1 x 2 x 3 B
1 / 1 = 1 2 / 1 = 2 -2 / 1 = -2 1 / 1 = 1


Разрешающий элемент равен (3).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
x 1 x 2 x 3 B
0 / 3 = 0 3 / 3 = 1 1 / 3 = 0.33 4 / 3 = 1.33


Разрешающий элемент равен (-4).
На месте разрешающего элемента получаем 1, а в самом столбце записываем нули.
Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника.
Для этого выбираем четыре числа, которые расположены в вершинах прямоугольника и всегда включают разрешающий элемент РЭ.
Представим расчет каждого элемента в виде таблицы:
x 1 x 2 x 3 B
0 / -4 = 0 0 / -4 = 0 -4 / -4 = 1 -4 / -4 = 1


Ответ : x 1 = 1, x 2 = 1, x 3 = 1

Реализация метода Гаусса

Метод Гаусса реализован на многих языках программирования, в частности: Pascal, C++, php, Delphi , а также имеется реализация метода Гаусса в онлайн режиме .

Использование метода Гаусса

Применение метода Гаусса в теории игр

В теории игр при отыскании максиминной оптимальной стратегии игрока составляется система уравнений, которая решается методом Гаусса.

Применение метода Гаусса при решении дифференциальных уравнений

Для поиска частного решения дифференциального уравнения сначала находят производные соответствующей степени для записанного частного решения (y=f(A,B,C,D)), которые подставляют в исходное уравнение. Далее, чтобы найти переменные A,B,C,D составляется система уравнений, которая решается методом Гаусса.

Применение метода Жордано-Гаусса в линейном программировании

В линейном программировании, в частности в симплекс-методе для преобразования симплексной таблицы на каждой итерации используется правило прямоугольника, в котором используется метод Жордано-Гаусса.

Примеры

Пример №1 . Решить систему методом Гаусса:
x 1 +2x 2 - 3x 3 + x 4 = -2
x 1 +2x 2 - x 3 + 2x 4 = 1
3x 1 -x 2 + 2x 3 + x 4 = 3
3x 1 +x 2 + x 3 + 3x 4 = 2

Для удобства вычислений поменяем строки местами:

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой





Для удобства вычислений поменяем строки местами:







Из 1-ой строки выражаем x 4

Из 2-ой строки выражаем x 3

Из 3-ой строки выражаем x 2

Из 4-ой строки выражаем x 1

Пример №3 .

  1. Решить СЛАУ методом Жордано-Гаусса. Запишем систему в виде: Разрешающий элемент равен (2.2). На месте разрешающего элемента получаем 1, а в самом столбце записываем нули. Все остальные элементы матрицы, включая элементы столбца B, определяются по правилу прямоугольника. x 1 = 1.00, x 2 = 1.00, x 3 = 1.00
  2. Систему линейных уравнений решить методом Гаусса
    Пример

    Посмотрите, как быстро можно определить, является ли система совместной

    Видеоинструкция

  3. Применяя метод Гаусса исключения неизвестных, решить систему линейных уравнений. Сделать проверку найденного решения: Решение
  4. Решить систему уравнений методом Гаусса. Рекомендуется преобразования, связанные с последовательным исключением неизвестных, применять к расширенной матрице данной системы. Сделать проверку полученного решения.
    Решение :xls
  5. Решить систему линейных уравнений тремя способами: а) методом Гаусса последовательных исключений неизвестных; б) по формуле x = A -1 b с вычислением обратной матрицы A -1 ; в) по формулам Крамера.
    Решение :xls
  6. Решить методом Гаусса следующую вырожденную систему уравнений.
    Скачать решение doc
  7. Решите методом Гаусса систему линейных уравнений записанную в матричной форме:
    7 8 -3 x 92
    2 2 2 y = 30
    -9 -10 5 z -114

Решение системы уравнений методом сложения

Решите 6x+5y=3, 3x+3y=4 систему уравнений методом сложения.
Решение.
6x+5y=3
3x+3y=4
Умножим второе уравнение на (-2).
6x+5y=3
-6x-6y=-8
============ (складываем)
-y=-5
Откуда y = 5
Находим x:
6x+5*5=3 или 6x=-22
Откуда x = -22/6 = -11/3

Пример №2 . Решение СЛАУ в матричной форме означает, что исходную запись системы необходимо привести к матричной (так называемая расширенная матрица). Покажем это на примере.
Запишем систему в виде расширенной матрицы:

2 4 3
-2 5 4
3 0 1
9
7
4
Добавим 2-ую строку к 1-ой:
0 9 7
-2 5 4
3 0 1
16
7
4
Умножим 2-ую строку на (3). Умножим 3-ую строку на (2). Добавим 3-ую строку к 2-ой:
0 9 7
0 15 14
3 0 1
16
29
4
Умножим 1-ую строку на (15). Умножим 2-ую строку на (-9). Добавим 2-ую строку к 1-ой:
0 0 -21
0 15 14
3 0 1
-21
29
4
Теперь исходную систему можно записать как:
x 3 = -21/(-21) = 1
x 2 = /15
x 1 = /3
Из 2-ой строки выражаем x 2:
Из 3-ой строки выражаем x 1:

Пример №3 . Решить систему методом Гаусса: x 1 +2x 2 - 3x 3 + x 4 = -2
x 1 +2x 2 - x 3 + 2x 4 = 1
3x 1 -x 2 + 2x 3 + x 4 = 3
3x 1 +x 2 + x 3 + 3x 4 = 2

Решение:
Запишем систему в виде:
Для удобства вычислений поменяем строки местами:

Умножим 2-ую строку на (-1). Добавим 2-ую строку к 1-ой

Умножим 2-ую строку на (3). Умножим 3-ую строку на (-1). Добавим 3-ую строку к 2-ой

Умножим 4-ую строку на (-1). Добавим 4-ую строку к 3-ой

Для удобства вычислений поменяем строки местами:

Умножим 1-ую строку на (0). Добавим 2-ую строку к 1-ой

Умножим 2-ую строку на (7). Умножим 3-ую строку на (2). Добавим 3-ую строку к 2-ой

Умножим 1-ую строку на (15). Умножим 2-ую строку на (2). Добавим 2-ую строку к 1-ой

Из 1-ой строки выражаем x 4

Из 2-ой строки выражаем x 3

Из 3-ой строки выражаем x 2

Из 4-ой строки выражаем x 1

Две системы линейных уравнений называются равносильными, если множество всех их решений совпадает.

Элементарные преобразования системы уравнений - это:

  1. Вычеркивание из системы тривиальных уравнений, т.е. таких, у которых все коэффициенты равны нулю;
  2. Умножение любого уравнения на число, отличное от нуля;
  3. Прибавление к любому i -му уравнению любого j -то уравнения, умноженного на любое число.

Переменная x i называется свободной, если эта переменная не является разрешенной, а вся система уравнений - является разрешенной.

Теорема. Элементарные преобразования переводят систему уравнений в равносильную.

Смысл метода Гаусса заключается в том, чтобы преобразовать исходную систему уравнений и получить равносильную разрешенную или равносильную несовместную систему.

Итак, метод Гаусса состоит из следующих шагов:

  1. Рассмотрим первое уравнение. Выберем первый ненулевой коэффициент и разделим все уравнение на него. Получим уравнение, в которое некоторая переменная x i входит с коэффициентом 1;
  2. Вычтем это уравнение из всех остальных, умножая его на такие числа, чтобы коэффициенты при переменной x i в остальных уравнениях обнулились. Получим систему, разрешенную относительно переменной x i , и равносильную исходной;
  3. Если возникают тривиальные уравнения (редко, но бывает; например, 0 = 0), вычеркиваем их из системы. В результате уравнений становится на одно меньше;
  4. Повторяем предыдущие шаги не более n раз, где n - число уравнений в системе. Каждый раз выбираем для «обработки» новую переменную. Если возникают противоречивые уравнения (например, 0 = 8), система несовместна.

В результате через несколько шагов получим либо разрешенную систему (возможно, со свободными переменными), либо несовместную. Разрешенные системы распадаются на два случая:

  1. Число переменных равно числу уравнений. Значит, система определена;
  2. Число переменных больше числа уравнений. Собираем все свободные переменные справа - получаем формулы для разрешенных переменных. Эти формулы так и записываются в ответ.

Вот и все! Система линейных уравнений решена! Это довольно простой алгоритм, и для его освоения вам не обязательно обращаться к репетитору высшей по математике. Рассмотрим пример:

Задача. Решить систему уравнений:

Описание шагов:

  1. Вычитаем первое уравнение из второго и третьего - получим разрешенную переменную x 1 ;
  2. Умножаем второе уравнение на (−1), а третье уравнение делим на (−3) - получим два уравнения, в которых переменная x 2 входит с коэффициентом 1;
  3. Прибавляем второе уравнение к первому, а из третьего - вычитаем. Получим разрешенную переменную x 2 ;
  4. Наконец, вычитаем третье уравнение из первого - получаем разрешенную переменную x 3 ;
  5. Получили разрешенную систему, записываем ответ.

Общее решение совместной системы линейных уравнений - это новая система, равносильная исходной, в которой все разрешенные переменные выражены через свободные.

Когда может понадобиться общее решение? Если приходится делать меньше шагов, чем k (k - это сколько всего уравнений). Однако причин, по которым процесс заканчивается на некотором шаге l < k , может быть две:

  1. После l -го шага получилась система, которая не содержит уравнения с номером (l + 1). На самом деле это хорошо, т.к. разрешенная система все равно получена - даже на несколько шагов раньше.
  2. После l -го шага получили уравнение, в котором все коэффициенты при переменных равны нулю, а свободный коэффициент отличен от нуля. Это противоречивое уравнение, а, следовательно, система несовместна.

Важно понимать, что возникновение противоречивого уравнения по методу Гаусса - это достаточное основание несовместности. При этом заметим, что в результате l -го шага не может остаться тривиальных уравнений - все они вычеркиваются прямо в процессе.

Описание шагов:

  1. Вычитаем первое уравнение, умноженное на 4, из второго. А также прибавляем первое уравнение к третьему - получим разрешенную переменную x 1 ;
  2. Вычитаем третье уравнение, умноженное на 2, из второго - получим противоречивое уравнение 0 = −5.

Итак, система несовместна, поскольку обнаружено противоречивое уравнение.

Задача. Исследовать совместность и найти общее решение системы:


Описание шагов:

  1. Вычитаем первое уравнение из второго (предварительно умножив на два) и третьего - получим разрешенную переменную x 1 ;
  2. Вычитаем второе уравнение из третьего. Поскольку все коэффициенты в этих уравнениях совпадают, третье уравнение превратится в тривиальное. Заодно умножим второе уравнение на (−1);
  3. Вычитаем из первого уравнения второе - получим разрешенную переменную x 2 . Вся система уравнений теперь тоже разрешенная;
  4. Поскольку переменные x 3 и x 4 - свободные, переносим их вправо, чтобы выразить разрешенные переменные. Это и есть ответ.

Итак, система совместная и неопределенная, поскольку есть две разрешенных переменных (x 1 и x 2) и две свободных (x 3 и x 4).