Метеорологические факторы. Биологический ритм и психика человека

Метеорологические условия оказывают существенное влияние на перенос и рассеивание вредных примесей, поступающих в атмосферу. Современные города обычно занимают территории в десятки, а иногда сотни квадратных километров, поэтому изменение содержания вредных веществ в их атмосфере происходит под действием мезо- и макромасштабных атмосферных процессов. Наибольшее влияние на рассеивание примесей в атмосфере оказывает режим ветра и температуры, в особенности ее стратификация.

Влияние метеорологических условий на перенос веществ в воздухе проявляется по-разному, в зависимости от типа источника выбросов. Если исходящие от источника газы перегреты относительно окружающего воздуха, то они обладают начальным подъемом; в связи с этим вблизи источника выбросов создается поле вертикальных скоростей, способствующих подъему факела и уносу примесей вверх. При слабых ветрах этот подъем обусловливает уменьшение концентраций примесей у земли. Концентрация примесей у земли бывает и при очень сильных ветрах, однако в этом случае оно происходит за счет быстрого переноса примесей. В результате наибольшие концентрации примесей в приземном слое формируются при некоторой скорости, которую называют опасная. Значение ее зависит от типа источника выбросов и определяется по формуле

где - объем выбрасываемой газовоздушной смеси, - разность температур этой смеси и окружающего воздуха, - высота трубы.

При низких источниках выбросов повышенный уровень загрязнения воздуха отмечается при слабых ветрах (0-1 м/с) за счет скопления примесей в приземном слое.

Несомненно, важное значение для скопления примесей имеет и продолжительность ветра определенной скорости, особенно слабого.

Прямое влияние на характер загрязнения воздуха в городе оказывает направление ветра. Существенное увеличение концентрации примесей наблюдается тогда, когда преобладают ветры со стороны промышленных объектов.

К основным формам, определяющим рассеивание примесей, относится стратификация атмосферы, в том числе инверсия температуры, (т.е. повышение температуры воздуха с высотой). Если повышение температуры начинается непосредственно от поверхности земли, инверсию называют приземной, если же с некоторой высоты над поверхностью земли, то - приподнятой. Инверсии затрудняют вертикальный воздухообмен. Если слой приподнятой инверсии расположен на достаточно большой высоте от труб промышленных предприятий, то концентрация примесей будет существенно меньше. Слой инверсии, расположенный ниже уровня выбросов, препятствует переносу их к земной поверхности.

Инверсии температуры в нижней тропосфере определяются в основном двумя факторами: охлаждением земной поверхности вследствие радиационного излучения и адвекцией теплого воздуха на холодную подстилающую поверхность; часто они связаны с охлаждением приземного слоя за счет затрат тепла на испарение воды или таяние снега и льда. Формированию инверсий способствует также нисходящие движения в антициклонах и сток холодного воздуха в пониженные части рельефа.

В результате теоретических исследований установлено, что при высоких выбросах концентрация примесей в приземном слое растет за счет усиления турбулентного обмена, вызванного неустойчивой стратификацией. Максимум приземной концентрации нагретой и холодной примеси определяется соответственно по формулам:

где; и - количество вещества и объемов газов, выбрасываемых в атмосферу в атмосферу в единицу времени; - диаметр устья источника выбросов; , - безразмерные коэффициенты, учитывающие скорость оседания вредных веществ в атмосфере и условия выхода газовоздушной смеси из устья источника выбросов; - перегрев газов; - коэффициент, определяющий условия вертикального и горизонтального рассеивания вредных веществ и зависящий от температурной стратификации атмосферы. Коэффициент определяют при неблагоприятных метеорологических условиях рассеивания примесей, при интенсивном вертикальном турбулентном обмене в приземном слое воздуха, когда приземная концентрация примеси в воздухе от высокого источника достигает максимума. Таким образом, чтобы знать значение коэффициента для различных физико-географических районов необходимы сведения о пространственном распределении значений коэффициента турбулентного обмена в приземном слое атмосферы

В качестве характеристики устойчивости пограничного слоя атмосферы используется так называемая «высота слоя перемешивания», соответствующая примерно высоте пограничного слоя. В этом слое наблюдаются интенсивные вертикальные движения, вызванные радиационным нагреванием, а вертикальный градиент температуры приближается к сухоадиабатическому или превышает его. Высота слоя перемешивания может быть определена по данным аэрологического зондирования атмосферы и максимальной температуре воздуха у земли за сутки. Повышение концентрации примесей в атмосфере обычно наблюдается при уменьшении слоя перемешивания, особенно при его высоте менее 1,5 км. При высоте слоя перемешивания более 1,5 км практически не наблюдается повышение загрязнения воздуха.

При ослаблении ветра до штиля происходит накопление примесей, но в это время значительно увеличивается подъем перегретых выбросов в верхние слои атмосферы, где они рассеиваются. Однако, если при этих условиях наблюдается инверсия, то может образоваться «потолок», который будет препятствовать подъему выбросов. Тогда концентрация примесей у земли резко возрастает.

Связь между уровнем загрязнения воздуха и метеорологическими условиями очень сложная. Поэтому при исследовании причин формирования повышенного уровня загрязнения атмосферы более удобно использовать не отдельные метеорологические характеристики, а комплексные параметры, соответствующие определенной метеорологической ситуации, например, скорость ветра и показатель термической стратификации. Для состояния атмосферы в городах большую опасность представляет приземная инверсия температуры в сочетании со слабыми ветрами, т.е. ситуация застоя воздуха. Обычно она связана с крупномасштабными атмосферными процессами, чаще всего с антициклонами, при которых в пограничном слое атмосферы наблюдаются слабые ветры, формируются приземные радиационные инверсии температуры.

На формирование уровня загрязнения воздуха оказывают также влияние туманы, осадки и радиационный режим.

Туманы на содержание примесей в воздухе влияют сложным образом: капли тумана поглощают примесь, причем не только вблизи подстилающей поверхности, но и из вышележащих, наиболее загрязненных слоев воздуха. Вследствие этого концентрация примесей сильно возрастает в слое тумана и уменьшается над ним. При этом растворение сернистого газа в каплях тумана приводит к образованию более токсичной серной кислоты. Так как в тумане возрастает весовая концентрация сернистого газа, то при его окислении серной кислоты может образовываться в 1,5 раза больше.

Осадки очищают воздух от примесей. После длительных и интенсивных осадков высокие концентрации примесей наблюдается очень редко.

Солнечная радиация обусловливает фотохимические реакции в атмосфере и формирование различных вторичных продуктов, обладающих часто более токсичными свойствами, чем вещества, поступающие от источников выбросов. Так, в процессе фотохимических реакций в атмосфере происходит окисление сернистого газа с образованием сульфатных аэрозолей. В результате фотохимического эффекта в ясные солнечные дни в загрязненном воздухе формируется фотохимический смог.

Проведенный выше обзор позволил выявить наиболее важные метеорологические параметры, влияющие на уровень загрязнения воздуха.

Мно­голетние и годовые закономерности распределения атмосферных осад­ков, температуры воздуха, влажно­сти. Климатические (метеорологические) факторы во многом определяют особенности режима подземных вод. Заметное воздействие на грунтовые воды оказывают температура воздуха, атмосферные осадки, испарение, а также дефицит влажности воздуха и атмосферное давление. В своей совокупности воздействия они определяют размеры и сроки питания подземных вод и придают их режиму характерные черты.

Под климатом в метеорологии понимают закономерную смену атмосферных процессов, возникающих в результате сложного воздействия солнечной радиации на земную поверхность и атмосферу . Основными показателями климата можно считать:

Радиационный баланс Земли;

Процессы циркуляции атмосферы;

Характер подстилающей поверхности.

Космогенные факторы. Изменение климата во многом зависит от величины солнечной радиации , она определяет не только тепловой баланс Земли но и распределение других метеорологических элементов. Годовые суммы тепла радиации, приходящиеся на территорию Средней Азии и Казахстан составляют от 9000 до 12000 тыс. калл.

М.С.Эйгенсон (1957), Н.С. Токарев (1950), В.А. Коробейников (1959) отмечают закономерную связь колебаний уровня грунтовых вод с изменениями солнечной энергии. При этом установлены 4, 7, 11-летние циклы. М.С.Эйгенсон отмечает в среднем 1 раз в 11 лет число пятен (и факелов) достигает своего наибольшего количества. После этой эпохи максимума оно относительно медленно уменьшается с тем, чтобы достигнуть примерно через 7 лет своего наименьшего значения. После достижения эпохи 11-летнего цикличного минимума число пятен вновь закономерно возрастает, а именно в среднем через 4 года после минимума вновь наблюдается очередной максимум 11-летнего цикла и т.д.

Массовый корреляционный анализ режима подземных вод с различными индексами солнечной активности показал в целом низкие корреляционные связи. Лишь изредка коэффициент этой связи достигает 0,69. Сравнительно лучшие связи устанавливаются с индексом геомагнитной возмущенности Солнца.

Многими исследователями установлены многолетние закономерности атмосферной циркуляции . Ими выделяются две основные формы переноса тепла и влаги: зональная и меридиональная. При этом меридиональный перенос определяется наличием градиента температур воздуха между экватором и полюсом, а зональный – градиентом температур между океаном и материком. В частности, отмечается, что количество атмосферных осадков возрастает для Европейской части СНГ, Казахстана и Средней Азии при западном типе циркуляции, обеспечивающем приток влаги с Атлантики, и убывает по сравнению с нормой при восточном типе циркуляции.

Палеогеографические данные показывают, что на протяжении жизни Земли климатические условия подвергались неоднократным и значительным изменениям. Изменения климата происходят в результате многих причин: смещения оси вращения и перемещения полюсов Земли, изменения солнечной активности в прошлое геологическое время, прозрачности атмосферы и др. Одной из серьезных причин его изменения являются также крупные тектонические и экзогенные процессы, изменяющие облик (рельеф) земной поверхности.

Температура воздуха. На территории СНГ можно выделить три температурные провинции.

Первая – провинция с отрицательной среднегодовой температурой. Она занимает значительную часть азиатской территории. Здесь наблюдается широкое развитие многолетнемерзлых пород (вода находится в твердом состоянии и только в теплый летний период образует временные потоки).

Вторая провинция характеризуется положительной среднегодовой температурой воздуха и наличием сезонно мерзлоты почвы в зимний период (Европейская часть, юг Западной Сибири, Приморье, Казахстан и часть территории Средней Азии). В период промерзания почв прекращается питание грунтовых вод за счет атмосферных осадков, в то время как сток их еще происходит.

Третья провинция имеет положительную температуру воздуха в самый холодный период года. Она охватывает юг Европейской части СНГ, Черноморское побережье, Закавказье, юг Туркменской и часть Узбекской республики, а также Таджикистан (питание происходит в течение всего года).

Кратковременные повышения температуры в зимний период, создающие оттепели, вызывают резкие повышения уровня и увеличение дебита подземных вод.

Изменение температуры воздуха воздействует на грунтовые воды не непосредственно, а через породы зоны аэрации и воды этой зоны.

Механизм воздействия температуры воздуха на режим грунтовых вод весьма разнообразен и сложен. Наблюдениями установлены закономерные ритмичные колебания температуры, амплитуда которых постепенно уменьшается. Максимальная температура подземных вод с глубиной постепенно убывает до зоны постоянных температур. Минимальная температура наоборот с глубиной возрастает. Глубина залегания пояса постоянных температур зависит от литологического состава пород (зоны аэрации) и глубины залегания подземных вод.

Атмосферные осадки – являются одним из главнейших режимообразующих факторов. Известно, что атмосферные осадки расходуются на поверхностный и склоновый стоки, испарение и инфильтрацию (питают подземные воды).

Величина поверхностного стока зависит от климатических и других условий и колеблется от нескольких процентов до половины годовой суммы атмосферных осадков (в некоторых случаях и выше).

Наиболее трудно определяется величина испарения , которая также зависит от большого числа различных факторов (дефицит влажности воздуха, характер растительности, сила ветра, литологический состав, состояние и цвет почвы, и многие др.).

Из той части атмосферных осадков, которые проникают в зону аэрации, часть не достигает поверхности грунтовых вод, а расходуется на физическое испарение и транспирацию растениями.

Лизиметрическими исследованиями (Гордеев, 1959) были получены данные по лизиметрам, заложенным на разную глубину:

А.В.Лебедев (1954, 1959) расчетным путем установил зависимость величины питания грунтовых вод или инфильтрации и испарения от мощности зоны аэрации. Данные инфильтрации характеризуют период максимального питания (весна), а данные испарения – минимального (лето).

Просачивание воды в зоне аэрации зависит от интенсивности дождя, недостатка насыщения и полной водоотдачи, коэффициента фильтрации и достигает наибольшей глубины при более длительном дождевании. Прекращение дождя замедляет процесс продвижения воды, в таких случаях возможно образование «верховодки».

Таким образом, наилучшие условия при питании грунтовых вод существуют на небольших глубинах в основном в весеннее время при снеготаянии и осенью в период продолжительного выпадения осадков.

Воздействие атмосферных осадков на грунтовые воды вызывает изменение запасов, химического состава и температуры.

Несколько слов о снежном покрове, который около 10 см на юге, 80-100 см на севере и 100-120 см на Крайнем Севере, Камчатке. Наличие запасов воды в снеге еще не указывает на величину питания грунтовых вод. Существенную роль здесь играет мощность сезонно промерзающего слоя и продолжительность его оттаивания, величина испарения и расчлененность рельефа.

Испарение. Величина испарения зависит от очень большого числа факторов (влажность воздуха, ветра, температуры воздуха, радиации, неровности и цвета поверхности земли, а также наличия растительности и др.).

В зоне аэрации происходит испарение как воды, поступающей с поверхности в результате инфильтрации, так и воды с капиллярной каймы. В результате испарения удаляется вода, еще не достигшая грунтовых вод, и величина их питания уменьшается.

Влияние испарения на химический состав воды является сложным процессом. Состав воды в результате испарения (в аридной зоне) не изменяется, т. к. вода оставляет соли при испарении на уровне капиллярной каймы. При последующей инфильтрации подземные воды обогащаются наиболее легко растворимыми солями, возрастает их общая минерализация и содержания отдельных компонентов.

Чем больше мощность зоны аэрации, тем меньше испарение (с глубиной). На глубине более 4-5 м в пористых или слаботрещиноватых породах испарение становится весьма малым. Ниже этой глубины (до 40 м и более) процесс испарения практически постоянен (0,45 -0,5 мм в год). С глубиной амплитуда колебания уровня подземных вод затухает, что можно объяснить рассредоточением процесса питания во времени и балансированием его подземным стоком.

В Подмосковье при песчаном составе зоны аэрации и глубинах залегания подземных вод в среднем 2-3 м летние осадки достигают грунтовые воды лишь при величине дождевых осадков выше 40 мм или при продолжительных моросящих дождях.

Атмосферное давление. Увеличение атмосферного давления приводит к снижению уровней воды в скважинах и дебитов источников, а уменьшение, наоборот, к их уменьшению.

Отношение изменений уровня подземных вод Δh, вызванных соответствующим изменением атмосферного давления Δр называется барометрической эффективностью (Jacob,1940).

Параметр В, равный

Где γ – плотность воды (равная 1 г/см 3 для пресных вод),

характеризует упругие и фильтрационные свойства горизонта, а также степень его изоляции от атмосферы (В=0,3-0,8).

Изменение атмосферного давления может вызывать изменение уровня грунтовых вод до 20-30 см. Кроме того, порывы ветра, создавая разряжение атмосферного давления, могут приводить к подъему уровня до 5 см.

Рассмотренные выше режимообразующие климатические факторы не исчерпывают перечня многочисленных природных процессов, воздействующих на режим подземных вод.

Осн.: 3

Доп.: 6

Контрольные вопросы:

Что такое климат?

2. Каковы три основных показателя климата?

3. Перечислите метеорологические (климатические) режимообразующие факторы.

4. Каково влияние на режим подземных вод космогенных факторов?

5. Каковы многолетние закономерности атмосферной циркуляции, основные формы переноса тепла и влаги?

6. Дайте характеристику температурных провинций на территории СНГ.

7. От чего зависит глубина залегания пояса постоянных температур подземных вод?

8. Воздействие атмосферных осадков на грунтовые воды.

9. Влияние испарения на химический состав воды.

10. От чего зависит величина питания грунтовых вод или инфильтрация и испарение?

11. Как изменяется уровень воды в скважинах и дебит источников в зависимости от атмосферного давления?

12. Какой параметр называется барометрической эффективностью и какие свойства горизонта подземных вод он характеризует?

13. Может ли изменение атмосферного давления вызывать изменение уровня грунтовых вод?


Похожая информация.


МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ

физические свойства атмосферы, определяющие погоду и климат (или микроклимат) и оказывающие влияние на состояние организма.

Медицинские термины. 2012

Смотрите еще толкования, синонимы, значения слова и что такое МЕТЕОРОЛОГИЧЕСКИЕ ФАКТОРЫ в русском языке в словарях, энциклопедиях и справочниках:

  • ФАКТОРЫ
    СПРОСА И ПРЕДЛОЖЕНИЯ НЕЦЕНОВЫЕ - см. НЕЦЕНОВЫЕ ФАКТОРЫ СПРОСА И ПРЕДЛОЖЕНИЯ …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА ПЕРВИЧНЫЕ -см. ПЕРВИЧНЫЕ ФАКТОРЫ …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА ОСНОВНЫЕ - см ПЕРВИЧНЫЕ ФАКТОРЫ ПРОИЗВОДСТВА …
  • ФАКТОРЫ в Словаре экономических терминов:
    ПРОИЗВОДСТВА - используемые в производстве ресурсы, от которых в определяющей степени зависит объем выпускаемой продукции. К ним относятся земля, труд, …
  • ФАКТОРЫ в Словаре экономических терминов:
    ИНСТИТУЦИОНАЛЬНЫЕ - см ИНСТИТУЦИОНАЛЬНЫЕ ФАКТОРЫ …
  • ФАКТОРЫ в Словаре экономических терминов:
    - условия, причины, параметры, показатели, оказывающие влияние на экономический процесс и результат этого процесса. Например, к Ф., влияющим на производительность …
  • МЕТЕОРОЛОГИЧЕСКИЕ в Большом российском энциклопедическом словаре:
    МЕТЕОРОЛОЃИЧЕСКИЕ ЭЛЕМЕНТЫ, характеристики состояния атмосферы и атм. процессов: темп-ра, давление, влажность воздуха, ветер, облачность и осадки, дальность видимости, туманы, грозы …
  • ФАКТОРЫ РИСКА УХУДШЕНИЯ ЗДОРОВЬЯ в Энциклопедии трезвого образа жизни:
    — факторы поведенческого, биологического, генетического, социального характера, факторы связанные с загрязнением окружающей среды, природно-климатическими условиями, которые в наибольшей степени увеличивают …
  • АНТРОПОГЕННЫЕ ФАКТОРЫ СРЕДЫ в Медицинских терминах:
    (антропо- + греч. -genes порожденный; син.: антропоургические факторы среды, хозяйственно-бытовые факторы среды) факторы окружающей среды, возникновение которых обусловлено деятельностью человека, …
  • ТЕРМОМЕТРЫ МЕТЕОРОЛОГИЧЕСКИЕ
    метеорологические, группа термометров жидкостных специальной конструкции, предназначенных для метеорологических измерений главным образом на метеорологических станциях. Различные Т. м. в зависимости …
  • МЕТЕОРОЛОГИЧЕСКИЕ СЪЕЗДЫ в Большой советской энциклопедии, БСЭ:
    съезды, научные собрания специалистов в области метеорологии. В России 1-й и 2-й М. с. состоялись в Петербурге в …
  • МЕТЕОРОЛОГИЧЕСКИЕ ПРИБОРЫ в Большой советской энциклопедии, БСЭ:
    приборы, приборы и установки для измерения и регистрации значений метеорологических элементов. М. п. предназначены для работы в естественных …
  • МЕТЕОРОЛОГИЧЕСКИЕ ОРГАНИЗАЦИИ в Большой советской энциклопедии, БСЭ:
    организации международные, организации, создаваемые для международного сотрудничества в области метеорологии. Основные М. о. - Всемирная метеорологическая организация (ВМО). Наряду с …
  • МЕТЕОРОЛОГИЧЕСКИЕ ЖУРНАЛЫ в Большой советской энциклопедии, БСЭ:
    журналы (точнее метеорологические и климатологические журналы), периодические научные издания, освещающие вопросы метеорологии, климатологии и гидрологии. В СССР наиболее известными и …
  • АТМОСФЕРА ЗЕМЛИ в Большой советской энциклопедии, БСЭ:
    Земли (от греч. atmos - пар и sphaira - шар), газовая оболочка, окружающая Землю. А. принято считать ту область вокруг …
  • СТАНЦИИ МЕТЕОРОЛОГИЧЕСКИЕ
    см. Метеорологические …
  • ПРОМЫШЛЕННЫЕ ФАКТОРЫ ОПАСНОСТИ в Словаре Кольера:
    любые факторы, связанные с производством и способные оказать неблагоприятное влияние на здоровье человека. Условия окружающей среды, вещества или нагрузки, связанные …
  • БИОДЕТЕРМИНИЗМ в Словаре Терминов гендерных исследований.:
    (биологический детерминизм) - принцип рассмотрения явлений, при котором определяющими для характеристик человека, в данном случае гендерных или половых, считаются биологические …
  • ТОЛЬ ЭДУАРД
    Толь (Эдуард, барон) - зоолог, геолог и путешественник, родился в 1858 г. в Ревеле, изучал с 1877 по 1882 г. …
  • РОССИЯ, РАЗД. МЕТЕОРОЛОГИЯ в Краткой биографической энциклопедии:
    Ретеорологические наблюдения в России начались, по словам первого их историка, К.С. Веселовского, - около средины XVIII столетия: для Петербурга …
  • ПРЖЕВАЛЬСКИЙ НИКОЛАЙ МИХАЙЛОВИЧ в Краткой биографической энциклопедии:
    Пржевальский (Николай Михайлович) - известный русский путешественник, генерал-майор. Родился в 1839 г. Отец его, Михаил Кузьмич, служил в русской армии. …
  • ЖЕЛЕЗНОВ НИКОЛАЙ ИВАНОВИЧ в Краткой биографической энциклопедии:
    Железнов (Николай Иванович 1816 - 1877) - выдающийся ботаник и агроном. Среднее образование он получил в тогдашнем горном корпусе, а …
  • РАК ОБОДОЧНОЙ И ПРЯМОЙ КИШОК в Медицинском словаре.
  • в Медицинском словаре:
  • в Медицинском словаре:
  • БОЛЕЗНЬ ЯЗВЕННАЯ ПЕПТИЧЕСКАЯ в Медицинском словаре:
  • АНЕМИЯ ГЕМОЛИТИЧЕСКАЯ в Медицинском словаре:
  • РАК ОБОДОЧНОЙ И ПРЯМОЙ КИШОК в Медицинском большом словаре.
  • НЕДОСТАТОЧНОСТЬ ПОЧЕЧНАЯ ОСТРАЯ
    Острая почечная недостаточность (ОПН) - внезапно возникшее патологическое состояние, характеризующееся нарушением функции почек с задержкой выведения из организма продуктов азотистого …
  • НЕДОСТАТОЧНОСТЬ ПЕЧЁНОЧНОКЛЕТОЧНАЯ в Медицинском большом словаре:
    Печёночноклеточная недостаточность (ПКН) - термин, объединяющий различные нарушения функций печени, варьирующие от лёгких субклинических проявлений до печёночной энцефалопатии и комы. …
  • БОЛЕЗНЬ ЯЗВЕННАЯ ПЕПТИЧЕСКАЯ в Медицинском большом словаре:
    Термины язва, язвенная болезнь, пептическая язвенная болезнь применяют по отношению к группе заболеваний ЖКТ, характеризующихся образованием участков деструкции слизистой оболочки …
  • АНЕМИЯ ГЕМОЛИТИЧЕСКАЯ в Медицинском большом словаре:
    Гемолитйческие анемии - большая группа анемий, характеризующихся снижением средней продолжительности жизни эритроцитов (в норме 120 дней). Гемолиз (разрушение эритроцита) может …
  • ФАКТОРНЫЙ АНАЛИЗ в Большой советской энциклопедии, БСЭ:
    анализ, раздел статистического анализа многомерного,. объединяющий методы оценки размерности множества наблюдаемых переменных посредством исследования структуры ковариационных или корреляционных матриц. …
  • РАДИОМЕТЕОРОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    наука, в которой изучается, с одной стороны, влияние метеорологических условий в тропосфере и стратосфере на распространение радиоволн (главным образом УКВ), …
  • МЕТЕОРОЛОГИЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ в Большой советской энциклопедии, БСЭ:
    сельскохозяйственная, агрометеорология, прикладная метеорологическая дисциплина, изучающая метеорологические, климатические и гидрологические условия, имеющие значение для сельского хозяйства, в их взаимодействии с …
  • МЕТЕОРОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от греч. meteoros - поднятый вверх, небесный, meteora - атмосферные и небесные явления и...логия) , наука об атмосфере …
  • МЕТЕОРОЛОГИЧЕСКАЯ ОБСЕРВАТОРИЯ в Большой советской энциклопедии, БСЭ:
    обсерватория, научно-техническое учреждение, в котором ведут метеорологические наблюдения и исследования метеорологического режима на территории области, края, республики, страны. Некоторые …
  • КОСМОНАВТИКА в Большой советской энциклопедии, БСЭ:
    (от космос и греч. nautikе искусство мореплавания, кораблевождение), полеты в космическом пространстве; совокупность отраслей науки и техники, обеспечивающих освоение …
  • ИСПАРИТЕЛЬ (В МЕТЕОРОЛОГИИ) в Большой советской энциклопедии, БСЭ:
    эвапорометр (в метеорологии), прибор для измерения испарения с поверхности водоёмов и почвы. Для измерения испарения с поверхности водоёмов в СССР …
  • ИСКУССТВЕННЫЕ СПУТНИКИ ЗЕМЛИ в Большой советской энциклопедии, БСЭ:
    Спутники Земли (ИСЗ), космические летательные аппараты, выведенные на орбиты вокруг Земли и предназначенные для решения научных и прикладных задач. Запуск …
  • ДИНАМИКА ЧИСЛЕННОСТИ ЖИВОТНЫХ в Большой советской энциклопедии, БСЭ.
  • ГИДРОМЕТЕОРОЛОГИЧЕСКАЯ СТАНЦИЯ в Большой советской энциклопедии, БСЭ:
    станция, учреждение, ведущее метеорологические и гидрологические наблюдения над состоянием погоды, режимом океанов, морей, рек, озёр и болот. В зависимости …
  • БИОЛОГИЯ в Большой советской энциклопедии, БСЭ:
    (от био... и...логия) , совокупность наук о живой природе. Предмет изучения Б. - все проявления жизни: строение и …
  • АЭРОЛОГИЧЕСКИЕ ПРИБОРЫ в Большой советской энциклопедии, БСЭ:
    приборы, приборы для измерений в свободной атмосфере на различных высотах температуры, давления и влажности воздуха, а также солнечной радиации, высоты …
  • АНАЛИЗ ХОЗЯЙСТВЕННОЙ ДЕЯТЕЛЬНОСТИ в Большой советской энциклопедии, БСЭ:
    хозяйственной деятельности социалистических предприятий (экономический анализ работы предприятий), комплексное изучение хозяйственной деятельности предприятий и их объединений с целью повышения её …
  • ХАРЬКОВСКАЯ ГУБЕРНИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    I находится между 48°З1" и 51°16" с. ш. и между 33°50" и 39°50" в. д.; она представляет собой удлиненную с …
  • ФИЗИЧЕСКАЯ ОБСЕРВАТОРИЯ в Энциклопедическом словаре Брокгауза и Евфрона:
    по своему названию "физическая" обсерватория должна бы иметь своей целью всевозможные физические наблюдения, среди которых метеорологические составляли бы только одну …

Страница 1

Строительство и эксплуатация морских и речных портов осуществляется в условиях постоянного воздействия ряда внешних факторов, присущих основным природным средам: атмосфере, воде и суше. Соответственно этому внешние факторы подразделяют на 3 основные группы:

1)метеорологические;

2)гидрологические и литодинамические;

3)геологические и геоморфологические.

Метеорологические факторы:

Ветровой режим. Ветровая характеристика района строительства является основным фактором, определяющим местоположение порта по отношению к городу, районирование и зонирование его территории, взаимное расположение причалов различного технологического назначения. Являясь главным волнообразующим фактором режимные характеристики ветра определяют конфигурацию берегового причального фронта, компоновку акватории порта и внешних оградительных сооружений, трассирование водных подходов к порту.

Как метеорологическое явление ветер характеризуется направлением, скоростью, пространственным распределением (разгоном) и продолжительностью действия.

Направление ветра для целей портостроения и судоходства обычно рассматривают по 8-ми основным румбам.

Скорость ветра измеряется на высоте 10 м над поверхностью воды или суши с осреднением за 10 минут и выражается в метрах в секунду или узлах (knots, 1 узел=1 миля/час=0.514 метров/секунду).

В случае невозможности выполнения указанных требований результаты наблюдений над ветром могут быть откорректированы путем введения соответствующий поправок.

Под разгоном понимают расстояние, в пределах которого направление ветра изменялось не более чем на 300 .

Продолжительность действия ветра - период времени, в течение которого направление и скорость ветра находились в пределах определенного интервала.

Основными вероятностными (режимными) характеристиками ветрового потока, используемыми при проектировании морских и речных портов являются:

· повторяемость направлений и градаций скоростей ветра;

· обеспеченность скоростей ветра определенных направлений;

· расчетные скорости ветра, соответствующие заданным периодам повторяемости.

Температура воды и воздуха. При проектировании, строительстве и эксплуатации портов используют сведения о температуре воздуха и воды в пределах их изменения, а также вероятности экстремальных значений. В соответствии с данными о температуре определяются сроки замерзания и вскрытия бассейнов, устанавливается длительность и рабочий период навигации, планируется работа порта и флота. Статистическая обработка многолетних данных о температуре воды и воздуха предусматривает следующие этапы:

Влажность воздуха. Влажность воздуха определяется содержанием в нем водяных паров. Абсолютная влажность - количество водяного пара в воздухе, относительная - отношение абсолютной влажности к ее предельному значению при данной температуре.

Водяной пар поступает в атмосферу в процессе испарения с земной поверхности. В атмосфере водяной пар переносится упорядоченными воздушными течениями и путем турбулентного перемешивания. Под влиянием охлаждения водяной пар в атмосфере конденсируется – образуются облака, а затем и осадки, выпадающие на землю.

С поверхности океанов (361 млн. км2) в течение года испаряется слой воды толщиной 1423 мм (или 5,14х1014 т), с поверхности материков (149 млн. км2) – 423 мм (или 0,63х1014 т). Количество осадков на материках значительно превышает испарение. Это означает, что значительная масса водяного пара поступает на материки с океанов и морей. С другой стороны, не испарившаяся на материках вода поступает в реки и далее моря и океаны.

Сведения о влажности воздуха учитывают планировании перегрузки и хранения некоторых видов грузов (напр. чай, табак).

Туманы. Возникновение тумана обусловлено превращением паров в мельчайшие водяные капельки при увеличении влажности воздуха. Образование капелек происходит в случае наличия в воздухе мельчайших частиц (пыль, частицы соли, продукты сгорания и т.п.).

Проект СТО с конструктивной разработкой установки для мойки автомобиля снизу
Любой автолюбитель старается следить за чистотой и внешним видом своего автомобиля. В городе Владивостоке с влажным климатом и плохими дорогами следить за автомобилем сложно. Поэтому автовладельцам приходится прибегать к помощи специализированных автомоечных станций. Много машин в горо...

Разработка технологического процесса текущего ремонта жидкостного насоса автомобиля ВАЗ-2109
Автомобильный транспорт развивается качественно и количественно бурными темпами. В настоящее время ежегодный прирост мирового парка автомобилей равен 30-32 млн. единиц, а его численность - более 400 млн. единиц. Каждые четыре из пяти автомобилей общего мирового парка -легковые и на их до...

Бульдозер ДЗ-109
Целью данной работы является приобретение и закрепление знаний конструкции специфических узлов, главным образом электрооборудования машин для земляных работ. Сейчас разрабатывают бульдозеры для работ на более твердых грунтах. Разрабатывают бульдозеры с повышенной единичной мощностью м...

Каковы же, в подробностях, , приводящие к вышеотмеченным результатам, довольно трудно уточнить. Попытки установить с точностью (хотя бы относительной) эти факторы привели лишь к неполным, сомнительным, иногда противоречивым результатам. Из множественных входящих в состав метеорологического комплекса факторов, которые были изучены (воздушные течения, сквозняки, сырость, температура, атмосферное электричество, барометрическое давление, фронты воздуха, атмосферная ионизация, и пр.), более всего обращено внимание на атмосферную ионизацию, фронты воздуха и атмосферное давление, которые активны.

Некоторые исследователи , в своих работах, более всего ссылаются на часть вышеуказанных, другие же высказываются широко, неопределенно, без особого анализа и уточнения, о метеорологических факторах вообще. Тижевский считает способствующим эпидемиям фактором - электромагнетические расстройства атмосферы; Гаас считает, что падение барометрического давления способствует вылуплению аллергических проявлений, в особенности анафилактическому шоку; Фритше приписывает атмосферным электрическим явлениям метеоротропическое благотворное влияние на тромбоэмболические процессы; Коже обвиняет внезапные изменения атмосферного давления, как факторы развязывающие инфаркт миокарда, в то время, как А. Михай утверждает, что существенную роль играют фронты воздуха и, что не встречал ни одного случая инфаркта вне бесфронтового дня, а Данишевский ссылается на магнитные бури и т.д.

Только иногда появляются яснее: это случай определенных атмосферных течений (фен, сирокко), патогенное действие которых показывается ясно и которые вызывают массовые расстройства, настоящие малые эпидемические взрывы патологии. Так как в большинстве случаев действие метеорологических факторов относительно незаметно, понятно, что оно часто ускользает идентификации и особенно уточнению. Кажется, что речь идет о комплексном действии, множественном, многостороннем, а не о действии одного из вышеозначенных факторов: таково мнение как русских исследователей (Тижевский, Данишевский и др.), так и западных (Пикарди и др.).

Поэтому в работах, касающихся патогенного действия меторологических факторов , часто используются различные понятия; потому же среди них нет - лишь изредка - общих факторов и одинаковых мероценки; также по этой причине редко можно сравнивать результаты. Отсюда и многочисленные использованные наименования и выражения, а также и определенные сущности и ярлыки, под какими иногда был представлен патологический отголосок метеорологических факторов: „синдром бурной погоды" (Неттер), „синдром конца ночи"" (Аннес Диас). неговоря уже о синдроме сирокко или,Fohnkrankheit („болезнь фена"), фактически соответствуя некоторым более точным условиям.

Между тем было замечено, что некоторые патологические моменты , у человека, могли бы быть отнесены к определенным космическим и солнечным факторам. Было замечено, в первую очередь, что определенные атмосферные перемены, приливы-отливы морские, эпидемии совпадали и совпадают с особыми космическими моментами: солнечные вспышки, солнечные пятна и пр. (Тижевский, Делак, Ковач, Поспишил и др.).

Даже некоторые широкие экономические расстройства совпали с подобными космическими моментами и были отнесены к ним (Барэйль). Более тщательные исследования последнего времени установили, что между космическими происшествиями и определенными атмосферными расстройствами и бедствиями существует некоторая параллельность. Кажется, что связь действительна и, что космические факторы, действительно, оказывают определенное влияние (но незаметное, трудно выявляемое) на атмосферу, в которой иногда вызывают магнитные бури и другие расстройства, посредством которых далее воздействуют на землю, море, людей, также как вляют на них времена ми года, климатом, в доброй доле также подчиненных космическим факторам.

Таким образом от космических факторов зависят (более или менее непосредственно) биологические ритмы, та периодичность развертывания биологических элементов организма, ритмы налаженные, как видно, согласно всеобщему ритму космических явлений (суточная периодичность, сезонная периодичность т.д.). Также от вмешательства космических факторов зависят, кажется, и странные появления, серийно, некоторых атмосферных, социальных или патогенетических явлений, породившие так называемый „закон серий", видимо таинственного (Форе), потому что часто указанные явления совпадают с солнечными вспышками или пятнами и связанными с ними магнитными бурями.